====== Lecture 3 ====== /* ====== Lecture 02 ====== {{youtube>6VbbYXpBIqA?medium}} */ {{youtube>khLM8VV8LuM?medium}} ===== Comments ===== Preserve length, preserve cross product $\Leftrightarrow$ rigid body motion $\hat{u} \in so(3)$ * $g(v) = |v|$, length preserved * $g(u) \times g(v) = g(u \times v)$, cross product preserved $\left = \frac{1}{4}(|u+v|^2-|u-v|^2)$ $\Rightarrow \left = \left $, volume preserving ** Representation of Rigid-Body Motion ** The RBM preserves length and cross product. $r_i = g_t(e_i)$ $R = (r_1, r_2, r_3)$ $r_i^Tr_j = g_t(e_i)^T g_t(e_j) = e_i^T e_j = \delta_{ij}$ $\quad r_1 \times r_2 = r_3 \Rightarrow \det(R) =1$ $R^T R = RR^T = I$ $R$ is in the Special Orthogonal Group $SO(3)$ ** Rotation nasty to be represented ** $R_1 + R_2 \notin SO(3)$, not a linear space! $R_1 \cdot R_2 \in SO(3)$, not a linear space! R has 9 elements, choice is not independent. You have to guarantee: orthogonal and det(R) = 1 **Infinitesimal rotation** better representation of non-linear Group which is a smooth Manifold, is a Lie group. $x_{trans}(t) = R(t)x_{orig}$ $R(t)R(t)^T = I$, rotate forward and backward. You land where you started. $\frac{d}{dt}(RR^T) = \dot{R}R^T + R\dot{R^T} = 0$ $\dot{R}R^T = - (R\dot{R^T})^T$, is skew symmetric! $\dot{R}R^T = \hat{w} \Leftrightarrow \dot{R}(t)= \hat{w}R(t)$ $R(dr) = R(0) + dR = I + \hat{w}(0)dt$ ==== TRansformation between Lie Algebra and Lie Group ==== Lie Algebra: $so(3) = \{\hat{w} | w \in \mathbb{R}^3\}$ of skew symmetric matrices Lie Group: $SO(3)$, smooth manifold and a group The Lie algebra $so(3)$ is the tangent space at the identity of the rotation group $SO(3)$ algebra over a field K is a vector space over K with multiplication on the space V. Not commutative. Lie Brackets: $\left[\hat{w},\hat{v}\right] \identical \hat{w}\hat{v}-\hat{v}\hat{w} \in so(3)$ Two Lie groups we will study: $so(3), se(3)$ === Exponential Map === $\left\{ \dot{R}(t)=\hat{w}R(t)\right. $ $R(0) = I$ How does the rotation matrix change from one time within a little time step? $R(t) = e^{\hat{w}t} = \sum \ldots $ expansion. That solves the diff. eqn. above. $\exp: so(3) \rightarrow SO(3)\quad \hat{w} -> e^{\hat{w}}$