====== Lecture 02 ====== {{youtube>6VbbYXpBIqA?medium}} ===== Content ===== Chapter 1: Mathematical Background: Linear Algebra * Vector Spaces * Linear Transformations and Matrices * Properties of Matrices Chapter 2: Keywords ===== Annotations / Comments / Remarks ===== ==== Special Euklidian Group SE(3) ==== ==== Eigenvalue Problem ==== Linear transformation scales vector $\mathbf{v}$, scaling factor is Eigen value. Set of Eigen values is spectrum: $\sigma(A) = \{ \lambda_1 \ldots \lambda_n \} $ $A\mathbf{v} = \lambda \mathbf{v}$ $(A-\lambda \one) A = 0$ $\left(A-\lambda \unity \right) A = 0$ **Question:** If $P$ is invertible and $B = P^{-1}AP \Rightarrow \sigma(A) = \sigma(B)$. Why? ==== Symmetric Matrices ==== Real matrix with real Eigenvalues is related to symmetric matrix. $S^T = S$ Positive semidefinite: $x^TSx \ge 0$ Positive definite: $x^TSx > 0$ ==== Vector Spaces, Keywords ==== Vector space $V$ of field $\mathbb{R}$, commutative group (+), Subspace is closed subset, e.g. a plane or line running through $\vec{0}$ is a subspace. Span, linear dependency (or dependence), linear independence Basis, $\mathbf{B} = \{\mathbf{b}_1, \ldots , \mathbf{b}_n\}$ $\vec{v} = \sum_{i = 1}^k \alpha_i \vec{b}_i$ $\mathbf{v} = \sum_{i = 1}^k \alpha_i \mathbf{b}_i$ **Inner product, dot product** $\left<.,.\right>: V \times V \rightarrow V$ Cononical and Induced Inner Product: Kronecker Product: A=[10 20 30; 40 50 60] As = reshape(A,prod(size(A)),1) u = [1 2]' v = [2 3 4]' K = kron(v,u) disp("res1 = u'*A*v ") res1 = u'*A*v disp("res2 = kron(v,u)'*As ") res2 = kron(v,u)'*As ** Linear Transformation ** disp("Kanonical Basis") e1 = [1 0 0]' e2 = [0 1 0]' e3 = [0 0 1]' E = [e1 e2 e3] A = [1 2 3; 4 5 6] disp("This defines a lin. transf. L(v) = A*v") disp("The columns of A are the images of the basis verctors") disp("Image of basis vector e1: b1 = L(e1)=A*e1") b1 = A*e1 disp("Image of basis vector e2: b2 = L(e2)=A*e2") b2 = A*e2 disp("Image of basis vector e3: b3 = L(e3)=A*e3") b3 = A*e3 disp("v = 2*e1 + 3*e2 + 4*e3") v = 2*e1 + 3*e2 + 4*e3 disp("w=L(v)=A*v = L(2*e1+3*e2+4*e3)") w = A*v disp("w=2*L(e1)+3*L(e2)+4*L(e3)") ww = 2*b1 + 3*b2 + 4*b3 A Hilbert space is a metric vector space when the metric is based on an inner product (dot product). **Ring** $\mathcal{M(m,n)}$ is the set of all $m \times n$-matrices. $\mathcal{M(n)}$ is the set of all square matrices: $M(n) \in V$ $\cdot: V \times V \rightarrow V$ $+: V \times V \rightarrow V$ ==== Group ==== Group requirements: * $g_1\circ g_2 \in G$ * $e\circ g = g \circ e = g$ * $\exists g^{-1} \in G: g \circ g^{-1} = g \circ g^{-1} = e$ * $g_1 \circ g_2 \circ g_3 = (g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$ Example: Rotations form a group! Citation (DC): A group G has a matrix representation or can be realized as a matrix group if there exists an **injective** transformation: $R: G \rightarrow GL(n)$ Why not surjective, i.e. bijective in total? $R(\phi) \rightarrow M$ and $R(n\cdot2\pi+\phi) \rightarrow M$ are mapped to the same element of $M \in SO(n) \subset GL(n)$. Set of invertible square matrices form the General Linear Group GL(n). They are closed with respect to multiplication. $\det(M) = 1$ $R: G \rightarrow GL(n)$ $R(e) = I, R(g\circ h) = R(g)R(h), \all g,h \in G$ "It preserves the group structure!" (DC) $R$ is a group **homomorphism**. === Affine Group $A(n)$ === $L(x) = A(x) + b$ $L: \mathbb{R}^{n+1}\rightarrow \mathbb{R}^{n+1}$ $\left( \begin{array}{cc} A & \mathbf{x} \\\\ 0 & 1 \\\\ \end{array}\right) $ ===== Appendix: My MathJax Template for a Matrix ===== $\left( \begin{array}{rrrr} 1 & 0 & \cdots & 0 \\\\ 0 & \ddots & 0 & \vdots \\\\ \vdots & 0 & \ddots & 0 \\\\ 0 & \cdots & 0 & 1 \end{array}\right) $