Exercise Worksheet 1

26. Oktober 2011

Exercise 1

Part A

A sinusoidal voltage source with the peak value $\hat{u}=310 \mathrm{~V}$ and a frequency of 50 Hz is connected to a 50Ω resistor. Calculate the current $i(t)$ at the time

- 2.5 ms
- 10 ms
- 12 ms
- 15 ms .

Part B

Calculate the effective value of this voltage.

Exercise 2

Part A

Two complex numbers are given:

$$
\underline{Z}_{1}=2+j 8 \quad \underline{Z}_{2}=5+j 9
$$

Convert these numbers into polar coordinates representation.

Part B

These complex numbers are given:

$$
\underline{Z}_{1}=3+j 3 \quad \underline{Z}_{2}=4+j 5
$$

solve the following problems:

$$
\begin{gathered}
\underline{Z}=\underline{Z}_{1}+\underline{Z}_{2} \\
\underline{Z}=\underline{Z}_{1}-\underline{Z}_{2} \\
\underline{Z}=\underline{Z}_{1} \cdot \underline{Z}_{2} \\
\underline{Z}=\frac{\underline{Z}_{1}}{\underline{Z}_{2}}
\end{gathered}
$$

Exercise 3

An electrical heater has an resistance of 26.45Ω. It is connected to a 230 V power outlet via an 100 m long copper cabel (cross section $1.5 \mathrm{~mm}^{2}$)

Question:

What electrical voltage can I measure accross the heater resistance ? Calculate the power consumption of the heater.
The specific resistance for copper is $\rho=1.68 \cdot 10^{-2} \frac{\Omega m m^{2}}{m}$

Exercise 4

Calculate the reactances (X_{L} or X_{C}) of the following inductivities and capacities:

- $L=25 m H @ f=50 H z$
- $L=400 \mu H$ @ $f=200 H z$
- $C=100 \mu F$ @ $f=50 \mathrm{~Hz}$
- $C=2.2 \mu F @ f=500 H z$

Abbildung 1: Complex Circuit

Exercise 5

The circuit has the following component values.

- $\underline{U}=220 \mathrm{~V}$
- $R 1=400 \Omega$
- $R 2=200 \Omega$
- $C=10.61 \mu F$
- $f=50 H z$

Part A
Determine the voltage $\underline{U}_{R 2}$

Part B

Draw a vector diagram of all voltages and currents.

