eeng:topics:kirchhoff_s_circuit_laws:start
Differences
This shows you the differences between two versions of the page.
| Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
| eeng:topics:kirchhoff_s_circuit_laws:start [2022/10/23 15:17] – [Solution in Matlab / Octave] rolf | eeng:topics:kirchhoff_s_circuit_laws:start [2024/11/27 09:19] (current) – [WITH PROPER UNITS!] rolf | ||
|---|---|---|---|
| Line 2: | Line 2: | ||
| ====== Kirchhoff' | ====== Kirchhoff' | ||
| - | 2022-09-29, RB | + | 2023-12-06, RB |
| [[https:// | [[https:// | ||
| Line 10: | Line 10: | ||
| - Junction Rule (Current) | - Junction Rule (Current) | ||
| - Loop Rule (Voltage) | - Loop Rule (Voltage) | ||
| + | |||
| + | ===== Literature ===== | ||
| + | |||
| + | * **University Physics II - Thermodynamics Electricity and Magnetism (OpenStax) \\ [[https:// | ||
| Line 86: | Line 90: | ||
| $\begin{pmatrix} -1 & -1 & 1 \\ -6 & 3 & 0 \\ 0 & -3& -6 \end{pmatrix}\Omega\begin{pmatrix} I_1 \\ I_2 \\ I_3 \end{pmatrix}A = \begin{pmatrix} 0 \\ -24 \\ -12 \end{pmatrix}V $ | $\begin{pmatrix} -1 & -1 & 1 \\ -6 & 3 & 0 \\ 0 & -3& -6 \end{pmatrix}\Omega\begin{pmatrix} I_1 \\ I_2 \\ I_3 \end{pmatrix}A = \begin{pmatrix} 0 \\ -24 \\ -12 \end{pmatrix}V $ | ||
| - | Devide | + | Divide |
| $\begin{pmatrix} -1 & -1 & 1 \\ -6 & 3 & 0 \\ 0 & -3& -6 \end{pmatrix}\begin{pmatrix} I_1 \\ I_2 \\ I_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -24 \\ -12 \end{pmatrix} $ | $\begin{pmatrix} -1 & -1 & 1 \\ -6 & 3 & 0 \\ 0 & -3& -6 \end{pmatrix}\begin{pmatrix} I_1 \\ I_2 \\ I_3 \end{pmatrix} = \begin{pmatrix} 0 \\ -24 \\ -12 \end{pmatrix} $ | ||
| Line 107: | Line 111: | ||
| # kirchhoff_exercise_01.m | # kirchhoff_exercise_01.m | ||
| - | # This script solves a simple LES resulting from Kirchhoff' | + | # This script solves a simple LES resulting from Kirchhoff' |
| - | # Example from NunezPhysics | + | # Example from NunezPhysics |
| # R. Becker, 2015-04-12 | # R. Becker, 2015-04-12 | ||
| Line 135: | Line 139: | ||
| # kirchhoff_exercise_01.py | # kirchhoff_exercise_01.py | ||
| - | # This is a script | + | # This script |
| - | # Extended | + | # Example from NunezPhysics |
| - | # R. Becker, | + | # R. Becker, |
| - | # A*x = b <=> x = A^-1 * b (another notation x = A\b) | + | import numpy as np |
| - | A = [-1 -1 1 ; -6 3 0 ; 0 -3 -6] | + | # A matrix is an array of rows, which are arrays. Thus a matrix is a two dimensional array. |
| + | # The numpy.array() function is used to create 2D array (aka matrix) from a list of row lists. | ||
| + | R = np.array( | ||
| + | [ | ||
| + | | ||
| + | [-6.0, | ||
| + | [ 0.0, -3.0, -6.0] | ||
| + | | ||
| - | b = [0 -24 -12]' # ' means " | + | V = np.array([0.0, -24.0, -12.0]) |
| - | x = A\b | + | # Inverse matrix |
| + | Rinv = np.linalg.inv(R) | ||
| - | # alternative: | + | # Matrix vector multiplication, |
| - | # x = A^-1 * b | + | I = Rinv.dot(V) |
| - | # or | + | |
| - | # x = inv(A) * b | + | |
| + | # Print currents | ||
| + | print(I) | ||
| </ | </ | ||
| - | ===== Example 2: Wikipedia | + | ===== Example 2: YouTube Channel Jesse Mason ===== |
| - | * [[https:// | + | | {{youtube> |
| - | + | | Excellent explanation of Kirchhoff' | |
| - | ===== Example 3: YouTube Channel | + | |
| * [[https:// | * [[https:// | ||
| + | ===== Example 3: Wikipedia ===== | ||
| + | |||
| + | /* | ||
| + | * [[https:// | ||
| + | */ | ||
| + | | {{https:// | ||
| + | | Source: [[https:// | ||
eeng/topics/kirchhoff_s_circuit_laws/start.1666538248.txt.gz · Last modified: 2022/10/23 15:17 by rolf
