User Tools

Site Tools


mvg:lecture_01:start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
mvg:lecture_01:start [2018/11/19 09:05] – [Annotations / Comments / Remarks] adminmvg:lecture_01:start [2018/11/19 09:55] (current) – [Group] admin
Line 12: Line 12:
  
 Keywords Keywords
 +
 +===== Annotations / Comments / Remarks =====
  
 ==== Vector Spaces, Keywords ==== ==== Vector Spaces, Keywords ====
Line 99: Line 101:
 **Ring** **Ring**
  
-$\mathcal{M(m,n)}$ is the set of all $m \times n$-matrices. $\mathcal{M(n)}$ is the set of all square matrices (+$\mathcal{M(m,n)}$ is the set of all $m \times n$-matrices. $\mathcal{M(n)}$ is the set of all square matrices
 + 
 +$M(n) \in V$ 
 + 
 +$\cdot: V \times V \rightarrow V$ 
 +$+: V \times V \rightarrow V$ 
 + 
 +==== Group ==== 
 + 
 +Group requirements: 
 + 
 +  * $g_1\circ g_2 \in G$ 
 +  * $e\circ g = g \circ e = g$ 
 +  * $\exists g^{-1} \in G: g \circ g^{-1} = g \circ g^{-1} = e$ 
 +  * $g_1 \circ g_2 \circ g_3 = (g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$ 
 + 
 +Example: Rotations form a group! 
 + 
 +Citation (DC): 
 + 
 +A group G has a matrix representation or can be realized as a matrix group if there exists an **injective** transformation: 
 + 
 +$R: G \rightarrow GL(n)$ 
 + 
 + 
 +Why not surjective, i.e. bijective in total? $R(\phi) \rightarrow M$ and $R(n\cdot2\pi+\phi) \rightarrow M$ are mapped to the same element of $M \in SO(n) \subset GL(n)$. 
 + 
 +Set of invertible square matrices form the General Linear Group GL(n). They are closed with respect to multiplication. 
 + 
 +$\det(M) = 1$ 
 + 
 +$R: G \rightarrow GL(n)$ 
 + 
 +$R(e) = I, R(g\circ h) = R(g)R(h), \all g,h \in G$ 
 + 
 +"It preserves the group structure!" (DC) 
 + 
 +$R$ is a group **homomorphism**. 
 + 
 +=== Affine Group $A(n)$ === 
 + 
 +$L(x) = A(x) + b$ 
 + 
 +$L: \mathbb{R}^{n+1}\rightarrow \mathbb{R}^{n+1}$ 
 + 
 +$\left( \begin{array}{cc} 
 +A & \mathbf{x}  \\\\ 
 +0 & 1 \\\\ 
 +\end{array}\right) $ 
  
 +===== Appendix: My MathJax Template for a Matrix =====
  
 +$\left( \begin{array}{rrrr}
 +1 & 0 & \cdots & 0 \\\\
 +0 & \ddots & 0 & \vdots \\\\
 +\vdots & 0 & \ddots & 0 \\\\
 +0 & \cdots & 0 & 1 
 +\end{array}\right) $
  
mvg/lecture_01/start.1542618316.txt.gz · Last modified: 2018/11/19 09:05 by admin