User Tools

Site Tools


mvg:lecture_01:start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
mvg:lecture_01:start [2018/11/19 09:08] – [Vector Spaces, Keywords] adminmvg:lecture_01:start [2018/11/19 09:55] (current) – [Group] admin
Line 106: Line 106:
  
 $\cdot: V \times V \rightarrow V$ $\cdot: V \times V \rightarrow V$
 +$+: V \times V \rightarrow V$
  
 ==== Group ==== ==== Group ====
  
 +Group requirements:
  
 +  * $g_1\circ g_2 \in G$
 +  * $e\circ g = g \circ e = g$
 +  * $\exists g^{-1} \in G: g \circ g^{-1} = g \circ g^{-1} = e$
 +  * $g_1 \circ g_2 \circ g_3 = (g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$
  
 +Example: Rotations form a group!
  
 +Citation (DC):
 +
 +A group G has a matrix representation or can be realized as a matrix group if there exists an **injective** transformation:
 +
 +$R: G \rightarrow GL(n)$
 +
 +
 +Why not surjective, i.e. bijective in total? $R(\phi) \rightarrow M$ and $R(n\cdot2\pi+\phi) \rightarrow M$ are mapped to the same element of $M \in SO(n) \subset GL(n)$.
 +
 +Set of invertible square matrices form the General Linear Group GL(n). They are closed with respect to multiplication.
 +
 +$\det(M) = 1$
 +
 +$R: G \rightarrow GL(n)$
 +
 +$R(e) = I, R(g\circ h) = R(g)R(h), \all g,h \in G$
 +
 +"It preserves the group structure!" (DC)
 +
 +$R$ is a group **homomorphism**.
 +
 +=== Affine Group $A(n)$ ===
 +
 +$L(x) = A(x) + b$
 +
 +$L: \mathbb{R}^{n+1}\rightarrow \mathbb{R}^{n+1}$
 +
 +$\left( \begin{array}{cc}
 +A & \mathbf{x}  \\\\
 +0 & 1 \\\\
 +\end{array}\right) $
 +
 +
 +===== Appendix: My MathJax Template for a Matrix =====
 +
 +$\left( \begin{array}{rrrr}
 +1 & 0 & \cdots & 0 \\\\
 +0 & \ddots & 0 & \vdots \\\\
 +\vdots & 0 & \ddots & 0 \\\\
 +0 & \cdots & 0 & 1 
 +\end{array}\right) $
  
mvg/lecture_01/start.1542618518.txt.gz · Last modified: 2018/11/19 09:08 by admin