User Tools

Site Tools


mvg:lecture_01:start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
mvg:lecture_01:start [2018/11/19 09:17] – [Group] adminmvg:lecture_01:start [2018/11/19 09:55] (current) – [Group] admin
Line 115: Line 115:
   * $e\circ g = g \circ e = g$   * $e\circ g = g \circ e = g$
   * $\exists g^{-1} \in G: g \circ g^{-1} = g \circ g^{-1} = e$   * $\exists g^{-1} \in G: g \circ g^{-1} = g \circ g^{-1} = e$
-  * $g_1 \circ g_2 \circ g_3 = ($g_1 \circ g_2) \circ g_3 = $g_1 \circ (g_2 \circ g_3)   +  * $g_1 \circ g_2 \circ g_3 = (g_1 \circ g_2) \circ g_3 = g_1 \circ (g_2 \circ g_3)$
  
 Example: Rotations form a group! Example: Rotations form a group!
  
-"A group G has a matrix representation or can be realized as a matrix group if there exists an injective transformation:+Citation (DC): 
 + 
 +A group G has a matrix representation or can be realized as a matrix group if there exists an **injective** transformation:
  
 $R: G \rightarrow GL(n)$ $R: G \rightarrow GL(n)$
 +
 +
 +Why not surjective, i.e. bijective in total? $R(\phi) \rightarrow M$ and $R(n\cdot2\pi+\phi) \rightarrow M$ are mapped to the same element of $M \in SO(n) \subset GL(n)$.
  
 Set of invertible square matrices form the General Linear Group GL(n). They are closed with respect to multiplication. Set of invertible square matrices form the General Linear Group GL(n). They are closed with respect to multiplication.
  
 +$\det(M) = 1$
  
 +$R: G \rightarrow GL(n)$
  
 +$R(e) = I, R(g\circ h) = R(g)R(h), \all g,h \in G$
  
-$\det(M) = 1$+"It preserves the group structure!" (DC) 
 + 
 +$R$ is a group **homomorphism**. 
 + 
 +=== Affine Group $A(n)=== 
 + 
 +$L(x) = A(x) + b$ 
 + 
 +$L: \mathbb{R}^{n+1}\rightarrow \mathbb{R}^{n+1}$
  
 +$\left( \begin{array}{cc}
 +A & \mathbf{x}  \\\\
 +0 & 1 \\\\
 +\end{array}\right) $
  
  
 +===== Appendix: My MathJax Template for a Matrix =====
  
 +$\left( \begin{array}{rrrr}
 +1 & 0 & \cdots & 0 \\\\
 +0 & \ddots & 0 & \vdots \\\\
 +\vdots & 0 & \ddots & 0 \\\\
 +0 & \cdots & 0 & 1 
 +\end{array}\right) $
  
mvg/lecture_01/start.1542619078.txt.gz · Last modified: 2018/11/19 09:17 by admin