mvg:lecture_02:start
Differences
This shows you the differences between two versions of the page.
Both sides previous revisionPrevious revisionNext revision | Previous revision | ||
mvg:lecture_02:start [2018/11/19 12:09] – [Eigenvalue Problem] admin | mvg:lecture_02:start [2020/02/04 15:12] (current) – [Eigenvalue Problem] admin | ||
---|---|---|---|
Line 25: | Line 25: | ||
Linear transformation scales vector $\mathbf{v}$, | Linear transformation scales vector $\mathbf{v}$, | ||
- | Set of Eigen values is spectrum: $\sigma(A) = \left{\lambda_1 \ldots \lambda_n\right}$ | + | Set of Eigen values is spectrum: |
+ | |||
+ | $\sigma(A) = \{ \lambda_1 \ldots \lambda_n \} $ | ||
$A\mathbf{v} = \lambda \mathbf{v}$ | $A\mathbf{v} = \lambda \mathbf{v}$ | ||
+ | |||
+ | $(A-\lambda \one) A = 0$ | ||
+ | |||
+ | $\left(A-\lambda \unity \right) A = 0$ | ||
+ | |||
+ | **Question: | ||
+ | If $P$ is invertible and $B = P^{-1}AP \Rightarrow \sigma(A) = \sigma(B)$. Why? | ||
+ | |||
+ | ==== Symmetric Matrices ==== | ||
+ | |||
+ | Real matrix with real Eigenvalues is related to symmetric matrix. | ||
+ | |||
+ | $S^T = S$ | ||
+ | |||
+ | Positive semidefinite: | ||
+ | |||
+ | Positive definite: $x^TSx > 0$ | ||
+ | |||
==== Vector Spaces, Keywords ==== | ==== Vector Spaces, Keywords ==== | ||
mvg/lecture_02/start.1542629348.txt.gz · Last modified: 2018/11/19 12:09 by admin