User Tools

Site Tools


mvg:lecture_03:start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
mvg:lecture_03:start [2018/11/29 13:24] – [Comments] adminmvg:lecture_03:start [2018/12/23 18:45] (current) – [TRansformation between Lie Algebra and Lie Group] admin
Line 43: Line 43:
 ** Rotation nasty to be represented ** ** Rotation nasty to be represented **
  
-$R_1 + R_2 \notin SO(3)$+$R_1 + R_2 \notin SO(3)$, not a linear space!
  
 +
 +$R_1 \cdot R_2 \in SO(3)$, not a linear space!
 +
 +
 +R has 9 elements, choice is not independent. You have to guarantee: orthogonal and det(R) = 1
 +
 +**Infinitesimal rotation**
 +
 +better representation of non-linear 
 +
 +
 +Group which is a smooth Manifold, is a Lie group.
 +
 +$x_{trans}(t) = R(t)x_{orig}$
 +
 +$R(t)R(t)^T = I$, rotate forward and backward. You land where you started.
 +
 +$\frac{d}{dt}(RR^T) = \dot{R}R^T + R\dot{R^T} = 0$
 +
 +$\dot{R}R^T = - (R\dot{R^T})^T$, is skew symmetric!
 +
 +$\dot{R}R^T = \hat{w} \Leftrightarrow \dot{R}(t)= \hat{w}R(t)$ 
 +
 +$R(dr) = R(0) + dR = I + \hat{w}(0)dt$
 +
 +==== TRansformation between Lie Algebra and Lie Group ====
 +
 +Lie Algebra: $so(3) = \{\hat{w} | w \in \mathbb{R}^3\}$ of skew symmetric matrices
 +
 +Lie Group: $SO(3)$, smooth manifold and a group
 +
 +The Lie algebra $so(3)$ is the tangent space at the identity of the rotation group $SO(3)$
 +
 +algebra over a field K is a vector space over K with multiplication on the space V. Not commutative.
 +
 +Lie Brackets:
 +
 +$\left[\hat{w},\hat{v}\right] \identical \hat{w}\hat{v}-\hat{v}\hat{w} \in so(3)$
 +
 +Two Lie groups we will study: $so(3), se(3)$ 
 +
 +=== Exponential Map ===
 +
 +$\left\{ \dot{R}(t)=\hat{w}R(t)\right. $
 +
 +$R(0) = I$
 +
 +How does the rotation matrix change from one time within a little time step?
 +
 +
 +$R(t) = e^{\hat{w}t} = \sum \ldots $ expansion. That solves the diff. eqn. above.
 +
 +$\exp: so(3) \rightarrow SO(3)\quad \hat{w} -> e^{\hat{w}}$
 +  
  
  
mvg/lecture_03/start.1543497897.txt.gz · Last modified: 2018/11/29 13:24 by admin