User Tools

Site Tools


mvg:lecture_03:start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
mvg:lecture_03:start [2018/11/29 13:42] – [Comments] adminmvg:lecture_03:start [2018/12/23 18:45] (current) – [TRansformation between Lie Algebra and Lie Group] admin
Line 64: Line 64:
 $\frac{d}{dt}(RR^T) = \dot{R}R^T + R\dot{R^T} = 0$ $\frac{d}{dt}(RR^T) = \dot{R}R^T + R\dot{R^T} = 0$
  
-$\dot{R}R^T = - (R\dot{R}^T)^T$, is skew symmetric!+$\dot{R}R^T = - (R\dot{R^T})^T$, is skew symmetric! 
 + 
 +$\dot{R}R^T = \hat{w} \Leftrightarrow \dot{R}(t)= \hat{w}R(t)$  
 + 
 +$R(dr) = R(0) + dR = I + \hat{w}(0)dt$ 
 + 
 +==== TRansformation between Lie Algebra and Lie Group ==== 
 + 
 +Lie Algebra: $so(3) = \{\hat{w} | w \in \mathbb{R}^3\}$ of skew symmetric matrices 
 + 
 +Lie Group: $SO(3)$, smooth manifold and a group 
 + 
 +The Lie algebra $so(3)$ is the tangent space at the identity of the rotation group $SO(3)$ 
 + 
 +algebra over a field K is a vector space over K with multiplication on the space V. Not commutative. 
 + 
 +Lie Brackets: 
 + 
 +$\left[\hat{w},\hat{v}\right] \identical \hat{w}\hat{v}-\hat{v}\hat{w} \in so(3)$ 
 + 
 +Two Lie groups we will study: $so(3), se(3)$  
 + 
 +=== Exponential Map === 
 + 
 +$\left\{ \dot{R}(t)=\hat{w}R(t)\right. $ 
 + 
 +$R(0) = I$ 
 + 
 +How does the rotation matrix change from one time within a little time step? 
 + 
 + 
 +$R(t) = e^{\hat{w}t} = \sum \ldots $ expansion. That solves the diff. eqn. above. 
 + 
 +$\exp: so(3) \rightarrow SO(3)\quad \hat{w} -> e^{\hat{w}}$ 
 +   
  
mvg/lecture_03/start.1543498940.txt.gz · Last modified: 2018/11/29 13:42 by admin