User Tools

Site Tools


mvg:lecture_03:start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
mvg:lecture_03:start [2018/11/29 14:03] – [TRansformation between Lie Algebra and Lie Group] adminmvg:lecture_03:start [2018/12/23 18:45] (current) – [TRansformation between Lie Algebra and Lie Group] admin
Line 77: Line 77:
  
 The Lie algebra $so(3)$ is the tangent space at the identity of the rotation group $SO(3)$ The Lie algebra $so(3)$ is the tangent space at the identity of the rotation group $SO(3)$
 +
 +algebra over a field K is a vector space over K with multiplication on the space V. Not commutative.
  
 Lie Brackets: Lie Brackets:
  
-$\left[\hat{w},\hat{v}\right] \ident \hat{w}\hat{v}-\hat{v}\hat{w}$+$\left[\hat{w},\hat{v}\right] \identical \hat{w}\hat{v}-\hat{v}\hat{w} \in so(3)$ 
 + 
 +Two Lie groups we will study: $so(3), se(3)$  
 + 
 +=== Exponential Map === 
 + 
 +$\left\{ \dot{R}(t)=\hat{w}R(t)\right. $ 
 + 
 +$R(0) = I$ 
 + 
 +How does the rotation matrix change from one time within a little time step? 
 + 
 + 
 +$R(t) = e^{\hat{w}t} = \sum \ldots $ expansion. That solves the diff. eqn. above. 
 + 
 +$\exp: so(3) \rightarrow SO(3)\quad \hat{w} -> e^{\hat{w}}$ 
 +  
  
-Two Le groups we will study: $so(3), se(3)$  
  
mvg/lecture_03/start.1543500208.txt.gz · Last modified: 2018/11/29 14:03 by admin