User Tools

Site Tools


mvg:lecture_01:start

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revisionPrevious revision
Next revision
Previous revision
mvg:lecture_01:start [2018/11/19 09:25] – [Group] adminmvg:lecture_01:start [2018/11/19 09:55] (current) – [Group] admin
Line 130: Line 130:
 Set of invertible square matrices form the General Linear Group GL(n). They are closed with respect to multiplication. Set of invertible square matrices form the General Linear Group GL(n). They are closed with respect to multiplication.
  
 +$\det(M) = 1$
  
 +$R: G \rightarrow GL(n)$
  
 +$R(e) = I, R(g\circ h) = R(g)R(h), \all g,h \in G$
  
-$\det(M) = 1$+"It preserves the group structure!" (DC) 
 + 
 +$R$ is a group **homomorphism**. 
 + 
 +=== Affine Group $A(n)=== 
 + 
 +$L(x) = A(x) + b$ 
 + 
 +$L: \mathbb{R}^{n+1}\rightarrow \mathbb{R}^{n+1}$
  
 +$\left( \begin{array}{cc}
 +A & \mathbf{x}  \\\\
 +0 & 1 \\\\
 +\end{array}\right) $
  
  
 +===== Appendix: My MathJax Template for a Matrix =====
  
 +$\left( \begin{array}{rrrr}
 +1 & 0 & \cdots & 0 \\\\
 +0 & \ddots & 0 & \vdots \\\\
 +\vdots & 0 & \ddots & 0 \\\\
 +0 & \cdots & 0 & 1 
 +\end{array}\right) $
  
mvg/lecture_01/start.1542619519.txt.gz · Last modified: 2018/11/19 09:25 by admin