This is an old revision of the document!
Table of Contents
Lecture 01
Content
Chapter 1: Mathematical Background: Linear Algebra
- Vector Spaces
- Linear Transformations and Matrices
- Properties of Matrices
Keywords
Annotations / Comments / Remarks
Vector Spaces, Keywords
Vector space $V$ of field $\mathbb{R}$, commutative group (+),
Subspace is closed subset, e.g. a plane or line running through $\vec{0}$ is a subspace.
Span, linear dependency (or dependence), linear independence
Basis, $\mathbf{B} = \{\mathbf{b}_1, \ldots , \mathbf{b}_n\}$
$\vec{v} = \sum_{i = 1}^k \alpha_i \vec{b}_i$
$\mathbf{v} = \sum_{i = 1}^k \alpha_i \mathbf{b}_i$
Inner product, dot product
$\left<.,.\right>: V \times V \rightarrow V$
Cononical and Induced Inner Product:
Kronecker Product:
- kronecker_check.m
A=[10 20 30; 40 50 60] As = reshape(A,prod(size(A)),1) u = [1 2]' v = [2 3 4]' K = kron(v,u) disp("res1 = u'*A*v ") res1 = u'*A*v disp("res2 = kron(v,u)'*As ") res2 = kron(v,u)'*As
Linear Transformation
- lintransf_check.m
disp("Kanonical Basis") e1 = [1 0 0]' e2 = [0 1 0]' e3 = [0 0 1]' E = [e1 e2 e3] A = [1 2 3; 4 5 6] disp("This defines a lin. transf. L(v) = A*v") disp("The columns of A are the images of the basis verctors") disp("Image of basis vector e1: b1 = L(e1)=A*e1") b1 = A*e1 disp("Image of basis vector e2: b2 = L(e2)=A*e2") b2 = A*e2 disp("Image of basis vector e3: b3 = L(e3)=A*e3") b3 = A*e3 disp("v = 2*e1 + 3*e2 + 4*e3") v = 2*e1 + 3*e2 + 4*e3 disp("w=L(v)=A*v = L(2*e1+3*e2+4*e3)") w = A*v disp("w=2*L(e1)+3*L(e2)+4*L(e3)") ww = 2*b1 + 3*b2 + 4*b3
A Hilbert space is a metric vector space when the metric is based on an inner product (dot product).
Ring
$\mathcal{M(m,n)}$ is the set of all $m \times n$-matrices. $\mathcal{M(n)}$ is the set of all square matrices:
$M(n) \in V$
$\cdot: V \times V \rightarrow V$ $+: V \times V \rightarrow V$
Group
Group requirements:
- $g_1\circ g_2 \in G$
- $e\circ g = g \circ e = g$
- $\exists g^{-1} \in G: g \circ g^{-1} = g \circ g^{-1} = e$
- $g_1 \circ g_2 \circ g_3 = ($g_1 \circ g_2) \circ g_3 = $g_1 \circ (g_2 \circ g_3)
E.g. rotations form a group!
Set of invertable square matrices form the General Linear Group GL(n). They are closed with respect to multiplication.
$\det(M) = 1$