supp:octave:contrib:taylor:start
Octave: Taylor Series of exp(x)
Play. Plot the approximations for exp(x) as well as sin(x) and cos(x).
- taylor_exp_series.m
% Exponential Series: Taylor Series of exponential function. % 2015-04-22, Rolf Becker x=[-3:0.1:3]'; % factors in the sum. f is a matrix. Each column is a factor evaluated for all x f(:,1)=1*x.^0; % f0 f(:,2)=1*(1)*x.^1; % f1 f(:,3)=1/(1*2)*x.^2; % f2 f(:,4)=1/(1*2*3)*x.^3; f(:,5)=1/(1*2*3*4)*x.^4; f(:,6)=1/(1*2*3*4*5)*x.^5; f(:,7)=1/(1*2*3*4*5*6)*x.^6; f(:,8)=1/(1*2*3*4*5*6*7)*x.^7; f(:,9)=1/(1*2*3*4*5*6*7*8)*x.^8; f(:,10)=1/(1*2*3*4*5*6*7*8*9)*x.^9; % Taylor polynomials of exponential T(:,1) = f(:,1); for i = 2:10 T(:,i) = T(:,i-1)+f(:,i); endfor %fe=f0+f1+f2+f3+f4+f5+f6+f7+f8+f9; % + ... + fn n->inf %fc=f0-f2+f4-f6+f8; % cosine %fs=f1-f3+f5-f7+f9; % sine %plot(x,exp(x),x,fe) %plot(x,fc,x,fs,x,sin(x),x,cos(x)) figure(1) plot(x,exp(x),"k-+",x,T(:,1),x,T(:,2),x,T(:,3)) grid on axis([-1 1 0 2]) figure(2) plot(x,exp(x),"k-+",x,T) grid on axis([-3 3 -1 5])
supp/octave/contrib/taylor/start.txt · Last modified: 2018/06/07 05:44 by admin